Basking hamsters reduce resting metabolism, body temperature and energy costs during rewarming from torpor.

نویسندگان

  • Fritz Geiser
  • Kristina Gasch
  • Claudia Bieber
  • Gabrielle L Stalder
  • Hanno Gerritsmann
  • Thomas Ruf
چکیده

Basking can substantially reduce thermoregulatory energy expenditure of mammals. We tested the hypothesis that the largely white winter fur of hamsters (Phodopus sungorus), originating from Asian steppes, may be related to camouflage to permit sun basking on or near snow. Winter-acclimated hamsters in our study were largely white and had a high proclivity to bask when resting and torpid. Resting hamsters reduced metabolic rate (MR) significantly (>30%) when basking at ambient temperatures (Ta) of ∼15 and 0°C. Interestingly, body temperature (Tb) also was significantly reduced from 34.7±0.6°C (Ta 15°C, not basking) to 30.4±2.0°C (Ta 0°C, basking), which resulted in an extremely low (<50% of predicted) apparent thermal conductance. Induced torpor (food withheld) during respirometry at Ta 15°C occurred on 83.3±36.0% of days and the minimum torpor MR was 36% of basal MR at an average Tb of 22.0±2.6°C; movement to the basking lamp occurred at Tb<20.0°C. Energy expenditure for rewarming was significantly reduced (by >50%) during radiant heat-assisted rewarming; however, radiant heat per se without an endogenous contribution by animals did not strongly affect metabolism and Tb during torpor. Our data show that basking substantially modifies thermal energetics in hamsters, with a drop of resting Tb and MR not previously observed and a reduction of rewarming costs. The energy savings afforded by basking in hamsters suggest that this behaviour is of energetic significance not only for mammals living in deserts, where basking is common, but also for P. sungorus and probably other cold-climate mammals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basking behaviour and torpor use in free-ranging Planigale gilesi

We investigated the importance of energy-conserving strategies for free-ranging Planigale gilesi in arid Australia. We monitored torpor use and basking behaviour using internal temperature-sensitive transmitters. Torpor was used every day; the maximum torpor bout duration was 18.2 h and the minimum body temperature was 10.5 C. Basking behaviour was observed during rewarming from torpor as well ...

متن کامل

Hypoglycemia and torpor in Siberian hamsters.

We tested whether reduced blood glucose concentrations are necessary and sufficient for initiation of torpor in Siberian hamsters. During spontaneous torpor bouts, body temperature (Tb) decreases from the euthermic value of 37 to <31°C. Among hamsters that displayed torpor during maintenance in a short-day length (10 h light/day) at an air temperature of 15°C, blood glucose concentrations decre...

متن کامل

Passive rewarming from torpor in hibernating bats: minimizing metabolic costs and cardiac demands.

Endothermic arousal from torpor is an energetically costly process and imposes enormous demands on the cardiovascular system, particularly during early stage arousal from low body temperature (Tb). To minimize these costs many bats and other heterothermic endotherms rewarm passively from torpor using solar radiation or fluctuating ambient temperature (Ta). Because the heart plays a critical rol...

متن کامل

Reversible remodeling of lung tissue during hibernation in the Syrian hamster.

During hibernation, small rodents such as hamsters cycle through phases of strongly suppressed metabolism with low body temperature (torpor) and full restoration of metabolism and body temperature (arousal). Remarkably, the repetitive stress of cooling-rewarming and hypoxia does not cause irreversible organ damage. To identify adaptive mechanisms protecting the lungs, we assessed histological c...

متن کامل

Cool running: locomotor performance at low body temperature in mammals.

Mammalian torpor saves enormous amounts of energy, but a widely assumed cost of torpor is immobility and therefore vulnerability to predators. Contrary to this assumption, some small marsupial mammals in the wild move while torpid at low body temperatures to basking sites, thereby minimizing energy expenditure during arousal. Hence, we quantified how mammalian locomotor performance is affected ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 219 Pt 14  شماره 

صفحات  -

تاریخ انتشار 2016